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Summary. Cellular signalling pathways, mediating receptor activity to nuclear gene activation,
are generally regarded as feed forward cascades. We analyse measured data of a partially
observed signalling pathway and address the question of possible feed-back cycling of involved
biochemical components between the nucleus and cytoplasm. First we address the question
of cycling in general, starting from basic assumptions about the system. We reformulate the
problem as a statistical test leading to likelihood ratio tests under non-standard conditions. We
find that the modelling approach without cycling is rejected. Afterwards, to differentiate two dif-
ferent transport mechanisms within the nucleus, we derive the appropriate dynamical models
which lead to two systems of ordinary differential equations. To compare both models we apply
a statistical testing procedure that is based on bootstrap distributions. We find that one of both
transport mechanisms leads to a dynamical model which is rejected whereas the other model
is satisfactory.

Keywords: Bootstrap testing procedure; Differential equations; Model selection; Non-nested
non-linear models; Signalling pathway

1. Introduction

Cells respond to their environment through complex signal transduction pathways that fre-
quently begin at the cell membrane. In response to binding of specific ligands the receptor’s
cytoplasmic domain transmits the signal across the membrane and triggers a cascade of events
in the cell. This can often be described by a series of biochemical reactions which may lead to
gene expression.

Current research on signalling pathways and metabolic networks is still mainly dedicated to
answering questions concerning the qualitative behaviour of biological systems, e.g. showing
the effect of certain biochemical components on a system or investigating interdependences
between variables (Bhalla and Iyengar, 1999; Fussenegger et al., 2000). Although leading to a
broader understanding in general, to comprehend these biochemical networks fully it is neces-
sary to investigate their dynamical behaviour quantitatively (Koshland, 1998; Campbell, 1999;
Zheng and Flavel, 2000; Endy and Brent, 2001; Downward, 2001). This inevitably leads to
hypothesis testing to compare different models with statistical tests which are mostly applied
under non-standard conditions in the finite sample case.

In this paper we address the question of modelling the dynamical behaviour of a specific
signalling pathway representing a wide class of pathways. Starting with only a few assumptions

Address for correspondence: J. Timmer, Zentrum für Datenanalyse und Modellbildung, Universität Freiburg,
Eckerstrasse 1, 79104 Freiburg, Germany.
E-mail: jeti@fdm.uni-freiburg.de



558 T. G. Müller, D. Faller, J. Timmer, I. Swameye, O. Sandra and U. Klingmüller

about the underlying dynamics we first resolve the question of cycling, i.e. whether the biochem-
ical reactant which activates the target genes may leave the nucleus to take part again in the
signalling process. Afterwards we address the question of modelling the cycling behaviour with
statistical tests, comparing two different models which are derived from two different biochem-
ical hypotheses about the exact transport mechanism. In both cases mathematical models of the
dynamical behaviour are tested for compatibility with the measured data.

The paper is organized as follows. In Section 2 we describe the biochemical background
and formulate the mathematical properties on the basis of a priori knowledge. Furthermore we
describe the experimental set-up, focusing on questions related to partial observability of the
system and on measurement noise. In Section 3 we reformulate the mathematical problem and
resolve the question of cycling as a testing problem. Moreover we describe how to deal with
special non-standard conditions and present the results from this investigation. In Section 4
we present two candidates of global parametric models which comply with the results from the
previous section and test for compatibility with the data.

2. The biological model and the experimental set-up

Signalling pathways play a dominant role in information processing within the cell. On binding
of messenger molecules to cell surface receptors, signal transmission is initiated within the cell,
leading to a cascade of biochemical reactions. In many cases this leads to migration of specific
components into the nucleus where target genes are stimulated. A signalling pathway that has
been studied in great detail is the Janus kinase–signal transducer and activator of transcription
(STAT) pathway (Darnell, 1997; Pellegrini and Dusanter-Fourt, 1997) which can be activated
by several receptors. On binding of erythropoietin (Epo) to the Epo receptor (EpoR) several
biochemical reactions take place (Klingmüller et al., 1996). In the first step the unphosphory-
lated STAT5 component is phosphorylated. In the next step, phosphorylated STAT5 molecules
form dimers which can then enter the nucleus and stimulate activation of target genes; Fig. 1
(Haspel et al., 1996). Hence, this signalling pathway can be described as a dynamical system
consisting of one activation function, the time course of the activated EpoR, and four dynamical
variables: unphosphorylated STAT5, phosphorylated STAT5, dimerized STAT5 and STAT5 in
the nucleus. Although it is known that STAT5 leaves the nucleus and can be used in future
signalling cascades, the timescale of this release is unknown and hence the question of cycling
of STAT5 during one signalling cascade arises (Haspel and Darnell, 1999). This would mean
that STAT5 leaving the nucleus can be rephosphorylated by the EpoR, thus leading to a cycling
behaviour of the STAT5 component.

Unfortunately, no measurement technique is currently available which permits the direct
measurement of any system variable. This leads to unobserved components, which is a gen-
eral problem in the analysis of biochemical systems. Only the activation function of EpoR,
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Fig. 1. Schematic representation of the dynamical behaviour of the signalling pathway: the presence of the
cycling x4 !x1 is investigated
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Fig. 2. Measured time series of a typical data set: (a) amount of activated EpoR, (b) amount of phosphor-
ylated STAT5 and (c) amount of total STAT5 (for visualization purposes, we connected the data points with
lines)

the total amount of STAT5 in the cytoplasm and the amount of phosphorylated STAT5 in
the cytoplasm can be measured over time. Even worse, all measurements are only proportional
to the true amount, introducing additional unknown nuisance scaling parameters. Addition-
ally, measurements are corrupted by observational noise. Hence, we deal with partially
observed noisy data. A detailed description of the experimental measurement techniques that
are used can be found in Swameye et al. (2003). Basically, six biological samples are taken
at 16 different time points, and the amounts of STAT5, phosphorylated STAT5 and EpoR
are measured by immunoblotting followed by chemiluminescence measurements. Since this
measurement technique involves a counting process with high intensity, the error distribu-
tion can be approximated by a Gaussian distribution. In Fig. 2 we display a typical mea-
surement of all three observation functions. Error bars in Fig. 2(a) have been omitted since
EpoR activation serves as an input function to the system and is not modelled in a parametric
way.

To increase the power of the test it is possible to use independent experiments. Then, the
dynamical parameters governing the biochemical reactions of STAT5 are the same for every
experiment whereas the nuisance parameters differ.

To simplify the mathematical modelling we shall use the following notation: E.t/ is the time
course of the activated EpoR at time t, serving as the input function to the system. x1.t/, x2.t/
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and x3.t/ are the amounts of unphosphorylated, phosphorylated and dimerized STAT5 in the
cytoplasm and x4.t/ is the amount of STAT5 in the nucleus.

With a priori knowledge from biochemistry some properties of the system are known and we
can derive mathematical descriptions of some biochemical reactions.

(a) The phosphorylation process of unphosphorylated STAT5 x1.t/ which depends on the
activated EpoR leads to a reduction in unphosphorylated STAT5 which is described by
[p1x1E].

(b) Release of STAT5 from the nucleus is modelled by [p4x4]. This is a first-order approxi-
mation for many other transport mechanisms and therefore a rather general approach.

(c) The observation function of the total amount of phosphorylated STAT5 in the cytoplasm
is z1 =p5.x2 +x3/.

(d) The observation function of the total amount of STAT5 in the cytoplasm is z2 =p6.x1 +
x2 +x3/.

(e) The observation function of activated EpoR is z3 =p7E.
(f) The initial conditions are x2.0/=x3.0/=x4.0/=0, whereas x1.0/ must be estimated from

the data.
(g) Conservation of mass requires Σi xi =C = constant.
(h) All parameters are positive.

These properties are quite general and apply to many signalling pathways. Hence, the following
analysis is applicable to other systems.

It is important to note that in this first investigation we start from basic assumptions since we
do not assume any knowledge about a mathematical model of the dimerization process (x2 →x3)
or the transport of dimers into the nucleus (x3 →x4).

3. Mathematical modelling and the formulation of the testing problem

Using a priori knowledge from Section 2, we obtain the following ordinary differential equations
and observation functions:

ẋ1 =−p1x1E+p4x4,

z1 =p5.x2 +x3/,
.1/

ẋ2 =p1x1E−f.x2/,

z2 =p6.x1 +x2 +x3/,
.2/

ẋ3 =f.x2/−g.x3/,

z3 =p7E=: D,
.3/

ẋ4 =g.x3/−p4x4, .4/

with p1 and p4 unknown dynamical parameters, p5, p6 and p7 unknown nuisance parameters
and f.x2/ and g.x3/ unknown functions describing the biochemical reactions of dimerization
and transport into the nucleus. Parameters p2 and p3 will later be used to parameterize functions
f and g.

Using conservation of mass and the starting conditions we obtain

x1.t/= z2.t/

p6
− z1.t/

p5
, .5/
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ẋ1.t/= ż2.t/

p6
− ż1.t/

p5
, .6/

x4.t/= 1
p6

{z2.0/− z2.t/}, .7/

and differential equation (1) can be rewritten as

ż2.t/

p6
− ż1.t/

p5
=−p1

{
z2.t/

p6
− z1.t/

p5

}
z3.t/

p7
+ p4

p6
{z2.0/− z2.t/}: .8/

Testing for cycling now amounts to the question whether parameter p4 is different from 0.
We interpret the measured time series as realizations of random variables and reformulate this
question as a problem of model selection between two different linear regression models A and
B defined as follows: model A,

Yi =fA.X1i, X2i, X3i/ .9/

=K1X1i −K2X2i +K1K2X3i; .10/

model B,

Yi =fB.X1i, X2i, X3i, X4i/ .11/

=K1X1i −K2X2i +K1K2X3i −K3X4i +K4 .12/

with

Yi = ż2.ti/, .13/

X1i = ż1.ti/,
X2i = z2.ti/E.ti/,
X3i = z1.ti/E.ti/,

X4i = z2.ti/


 .14/

and parameters

K1 =p6=p5,
K2 =p1,
K3 =p4,

K4 =p4p6 x1.0/:


 .15/

To discriminate between models A and B, we would like to apply the test statistic L=2.LB −LA/

originating from the likelihood ratio test with LA and LB being defined as

LA =∑
i

−1
2

log.2π/− log.σi/− {Yi −fA.X1i, X2i, X3i/}2

2σ2
i

, .16/

LB =∑
i

−1
2

log.2π/− log.σi/− {Yi −fB.X1i, X2i, X3i, X4i/}2

2σ2
i

, .17/

i=1, . . . , 16. In our setting the observation error "i is assumed to be distributed according to

"i =N.0, σ2
i /, i=1, . . . , 16, .18/

and the distribution of the test statistic is known analytically. However, if the distribution of
the test statistic is not known analytically, it can be simulated by a parametric bootstrap, as will
be shown in what follows. We assume that all observations are corrupted by white noise and
obtain
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σ2
i =σ2

Yi
+∑

j

(
@f

@Xj

)2

σ2
Xji

: .19/

The distribution of the test statistic L critically depends on the amount of information that can
be drawn from the system. Before we deal with the actual setting of the recorded experimental
data, we shall investigate other realistic experimental settings and their influence on the distri-
bution of the test statistic. First we assume that Xji are realizations of independent random
variables and that only realizations of Y are corrupted by observational noise.

Models A and B originate from the same model class and are nested. Therefore, under stan-
dard conditions, we would assume that L=2.LB −LA/ is distributed as a χ2-distribution with
∆df=dfB −dfA degrees of freedom where ∆df is the difference in degrees of freedom and dfM

denotes the degrees of freedom of model M. For the case with one experiment we obtain ∆df=2
since model B has additional parameters K3 and K4; see Fig. 3, curve A. In fact, owing to the
additional constraints for all parameters, Kj �0, this distribution is different from the standard
distribution (Self and Liang, 1987). The constraints lead to a distribution consisting of a mixture
of χ2-distributions so that

L∼ 1
4 .χ2

0 +2χ2
1 +χ2

2/; .20/

see Fig. 3, curve B. The distribution incorporating the inequality constraints leads to a new 95%
quantile q0:95 = 4:23. It is noteworthy to recall the 95% quantile under standard conditions,
which is q0:95 =5:99. Hence the constraints are important to consider to avoid a loss of power
of the test.

In the increasingly more realistic settings that are investigated in what follows, the error
structure of the random variables Xj entering the test statistic exhibits an unknown dependence
structure. This error structure is increasingly complicated as the model assumptions become
increasingly more realistic. To the best of our knowledge, it is then not possible to describe the
distribution of L analytically, since the probability model underlying the standard likelihood
as a test statistic does not hold. Nevertheless this likelihood ratio test statistic remains a rea-
sonable test statistic, if its distribution is calculated by using a parametric bootstrap. Hence, a
parametric bootstrap procedure was applied to obtain the distribution of the likelihood ratio
test statistic under these conditions. For this, the parameter values based on estimates with
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Fig. 3. Cumulative distributions of the test statistic for various assumptions about the experimental con-
ditions: curve A corresponds to the standard likelihood ratio test, curve B includes the effects of positivity
constraints on the parameters, the implications for the test statistic resulting from the dynamical nature of the
underlying system assuming Xji can be observed is given by curve C, curve D shows the resulting distribu-
tion of the test statistic if only zi and their temporal derivatives are accessible and curve E finally shows the
resulting distribution if only the variables zi are observed (included in the figure is the 0.95 significance level
and the corresponding critical values)
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the smaller model were used to simulate the system dynamics. Then, at each of the original 16
time points, Gaussian observational noise was added to the simulated system dynamics. These
bootstrap samples were then used to simulate the distribution of the test statistic.

In the first setting, we investigate the test statistic, assuming that the variables Xjı, equa-
tion (14), can be observed directly. This leads to the error-in-variables problem. The result is
displayed in Fig. 3, curve C. The new conditions have a huge effect on the test statistic with the
new 95% quantile being q0:95 = 14:7. In the next setting, we assume that only time series zk.t/

and their temporal derivatives are directly accessible. Then, equations (13) and (14) may be used
to compute the realizations of the Xj. This leads to a new distribution of the test statistic due
to the non-linear transformation, equation (14). Again, we simulate this distribution, which is
displayed in Fig. 3, curve D. We obtain a value of q0:95 =19:0. Finally, we investigate the exper-
imental setting under which the data analysed were recorded, i.e. observations are restricted to
z1, z2 and z3 in equations (1)–(3). In this case temporal derivatives are not accessible by mea-
surement and must be estimated from the data. Here, we use a method that is based on splines
(Hanke and Scherzer, 2001) which estimates derivatives based on the coefficients of the local
polynomials of the fitted spline. In this case, the errors of random variables Y , X1, . . . , X4 follow
complex dependence structures and beforehand it is difficult to predict the effect on the test
statistic. Again, we use a simulation to compute the distribution of the test statistic L which is
displayed in Fig. 3, curve E, and yields q0:95 =30:5.

Fig. 3 summarizes the effect of different simplifying assumptions in deriving the test statistic.
It is important to note that inference based on all except the final full procedure is prone to
produce false positive results. When using the data set to calculate the value of the test statis-
tic, we obtain a value of L = 78:7 which corresponds to a p-value of p < 10−4. Therefore we
conclude that model A is not sufficient to describe the data. In Figs 4(a) and 4(b), a typical fit
for both models for the data set is shown. Model A cannot fit the data, whereas model B only
misrepresents some time points at the beginning.

Model selection between models A and B may be also resolved by approximating the proba-
bility distribution of estimated parameter p4 with a bootstrap procedure (Efron, 1982; Hinkley,
1988; Efron and Tibshirani, 1993). The Gaussianity of the error distribution, as motivated from
the measurement process, applies only to the observed variables, z1, z2 and z3. Variables Y , X1,
X2 and X3 are computed by multiplication or temporal differentiation of the time series of z1,
z2 and z3 and the distribution of these random variables is no longer Gaussian. To the best
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for data Y (- - - - - - - ): (a) smaller model without cycling; (b) larger model with cycling
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Fig. 5. Approximated probability density for the estimated dynamical parameter p4: - - - - - - - , under the null
hypothesis; , with a bootstrap procedure with 104 bootstrap samples

of our knowledge, there is no possibility of constructing a maximum likelihood estimator for
parameters K1, . . . , K4 owing to the unknown distribution of the random variables Y , X1, X2
and X3. Nevertheless, the distribution of the parameters is estimated by minimizing LA or LB.
To investigate the distribution of the parameters that are computed in this way under the null
hypothesis, we use a parametric bootstrap as described above.

Drawing 104 different bootstrap samples from the original data set and computing parameter
estimates for every bootstrap sample, we obtain an approximation of the probability distribution
for p4 as displayed in the full curve in Fig. 5. It is important to note that using this distribution
to test whether p4 is significantly greater than 0 does produce false positive results. Our simula-
tion reveals that the estimate of p4 under the null hypothesis is biased; see the broken curve in
Fig. 5. Therefore, when applying bootstrap procedures in such cases, it is necessary to simulate
the distribution of parameter estimates under the null hypothesis explicitly. Nevertheless, if we
compare both distributions of p4, under the null hypothesis and with the actual data set, in our
case we may conclude that parameter p4 is significantly greater than the expected value under
the null hypothesis. This confirms our results from the previous analysis of the test statistic L.

4. Dynamical modelling

To understand the dynamical behaviour of the signalling pathway in general, it is necessary to
find an appropriate mathematical description for the temporal evolution of all dynamical vari-
ables. Hence, we look for a dynamical model in the form of a deterministic differential equation.
Such a model is helpful for gaining insight into the hidden mechanisms of the pathway and for
designing future experiments since it can be used to predict the behaviour of the system under
perturbations. Possible alterations can be analysed theoretically and numerically in a fast and
cheap manner.

Naturally, all deterministic differential equations to model the dynamical behaviour are only
approximations to the truth. However, an analysis of the system with a priori knowledge, e.g.
from biochemistry, normally leaves only a few candidate models which can be compared with
model selection procedures.

From the previous investigations the model class is already reduced to models with cyclic
behaviour. In what follows we use a priori biochemical knowledge to model the dimerization
process and the transport into the nucleus mathematically. This will enable us later to focus on
comparing different models of cycling. The dimerization process (x2 → x3) is modelled as the
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reduction of phosphorylated STAT5 (x2) and the production of dimer (x3) by [p2x2
2]. The trans-

port into the nucleus (x3 → x4) is described as the reduction of dimer (x3) and production of
nuclear STAT5 (x4) by [p3x3]. However, there are two possible transport mechanisms governing
the export to the cytoplasm (x4 →x1) about which no reliable information is available.

(a) A compartmental approach: reduction of nuclear STAT5 (x4) and production of unphos-
phorylated STAT5 (x1) are proportional to the amount of nuclear STAT5 and can be
modelled by [p4x4].

(b) A model with delay: reduction of nuclear STAT5 (x4) and production of unphosphor-
ylated STAT5 (x1) are exactly the amount of dimerized STAT5 (x3) that entered the
nucleus at time t − τ . This mechanism can be modelled by [p3x3.t − τ /] and represents
the idea that dimerized STAT5 binds to the deoxyribonucleic acid for a certain time, is
dephosphorylated quickly and may then enter the cytoplasm again.

It is important to note that the discrimination between these parametric models of the trans-
port mechanisms (a) or (b) with the help of the measured data offers the possibility to gain
information about a mechanism which currently cannot be investigated directly by measure-
ments. In what follows, terms from model Mi (i=1, 2) will be denoted as [ ]i in the mathematical
description and the differential equations and observation equations are

ẋ1 =−p1x1E[+p4x4]1[+p3x3.t − τ /]2,

z1 =p5.x2 +x3/,
.21/

ẋ2 =p1x1E−p2x2
2,

z2 =p6.x1 +x2 +x3/,
.22/

ẋ3 =−p3x3 +p2x2
2,

z3 =p7E :=D,
.23/

ẋ4 =p3x3[−p4x4]1[−p3x3.t − τ /]2: .24/

Owing to the observation function of the system which allows only limited measurements of the
dynamical behaviour, not all dynamical and nuisance parameters as well as the starting value
x1.0/ can be extracted from the data. Therefore it is not possible to identify all the parameters
of the system. This non-identifiability often occurs in dynamical models with unobserved com-
ponents (Chappell et al., 1990; Müller et al., 2002). It is possible to obtain a dynamical system
with fewer parameters consisting of the same observation function. Therefore it is necessary to
apply a transformation of the differential equation to ensure that all transformed parameters
are identifiable.

Using the transformation

vi =p2xi,
r1 =p1=p7,

r3 =p3,

}
.25/

r4 =p4,
r5 =p5=p2,
r6 =p6=p2,

}
.26/

we obtain the following differential equations:

v̇1 =−r1v1D[+r4v4]1[+r3v3.t − τ /]2,
y1 = r5.v2 +v3/,

.27/
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v̇2 = r1v1D−v2
2,

y2 = r6.v1 +v2 +v3/,
.28/

v̇3 =−r3v3 +v2
2,

y3 =D,
.29/

v̇4 = r3v3[−r4v4]1[−r3v3.t − τ /]2: .30/

For all parameters rj it must hold that rj �0.
Assuming Gaussian errors, maximum likelihood estimates of all unknowns are computed by

minimizing

χ2{r, v1.0/}=
N∑

i=1

M∑
j=1

[yD
j .ti/−yM

j {ti, r, v1.0/}]2

σ2
ij

.31/

where N is the number of time points and M is the number of observed components. yD
j .ti/ are the

data points at time ti and yM
j {ti, r, v1.0/} is the solution of the ordinary differential equation for

model M with dynamical parameters r and starting value v1.0/. For details of the minimization
technique that is used see Bock (1981), Schittkowski (1995) and Timmer et al. (1998).

The χ2 goodness-of-fit tests for models M1 and M2 were at the border of significance. When
comparing models M1 and M2 directly to determine the mechanism of cycling, we deal with
a model selection problem, which is rather difficult since we compare non-nested non-linear
models in the finite sample case. Unfortunately, strict results only exist for the asymptotic case
(Cox, 1962; Pesaran and Deaton, 1978; Vuong, 1989). Therefore, we use a bootstrap procedure
to deal with this problem. In the first attempt we apply a procedure that is based on Wahrendorf
et al. (1987) and Hall and Wilson (1991). We first compute the log-likelihood of both models
and obtain the difference L̂12 = [L̂1 − L̂2]. Afterwards, for each of the two model fits, bootstrap
samples YÅ of the data Y are generated. These bootstrap samples are then used to obtain the
distribution of L̂Å

12 by computing the log-likelihood for each model given the data from the
corresponding bootstrap. The bootstrap distribution SÅ = [L̂Å

12 − L̂12] now serves as an approx-
imation of the distribution of [L̂12 −L0] where L0 is the true value. Thus, it is possible to test the
null hypothesis H0 that M1 or M2 is the true model and therefore L0 �0 or L0 �0 respectively.
Applying this procedure, we reject neither model M1 nor M2. This is consistent with the results
of Hall and Wilson (1991), who showed that this testing procedure has little power. Therefore,
to increase the power, we apply a procedure that was suggested by Hall and Wilson (1991).

In this approach, a bootstrap procedure is used to simulate data according to the null hypoth-
esis. Fitting one of the two models with the experimental data yields residuals which are used
in what follows to construct bootstrap samples of the data under the hypothesis that the cor-
responding model is true.

We first simulate separately under fitted model M1 to obtain bootstrap samples YÅ1. After-
wards, similarly to the previous procedure, we fit both models M1 and M2 using these bootstrap
data YÅ1 and compute the likelihood ratio L̂Å1

12 = [L̂Å1
1 − L̂Å1

2 ]. Again we can obtain the bootstrap
distribution of SÅ1 = [L̂Å1

12 − L̂12] and as before SÅ1 serves as an approximation to the distribu-
tion of [L̂12 − L0]. The same procedure is done under fitted model M2, leading to bootstrap
samples YÅ2. Again we fit both models M1 and M2 and obtain the bootstrap distribution SÅ2 =
[L̂Å2

12 − L̂12]. With these approximations we may compute significance levels in the case of each
statistic and we obtain α=0:007 for model M1 and α=0:26 for M2. Provided that our test pro-
cedure has enough power, this indicates that M2 is compatible with the data whereas M1 is not.

The main difference between the two bootstrap procedures is the construction of the boot-
strap samples. In the first approach, both models are used to fit the experimental data. Then the
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Fig. 6. Fit of the selected global model M2 for the experimental data set

residuals of both fits are used to construct distinct bootstrap samples for each of the two models.
The second approach uses the fit of one model, e.g. M1, to construct a common bootstrap sam-
ple which is then used to compute the likelihood for both models. Hence, the second approach
explicitly incorporates the null hypothesis in the construction of the bootstrap samples. In Fig. 6,
we display the resulting fit for selected model M2.

5. Discussion

We have shown the cycling behaviour of a signalling pathway with specific statistical tests. Since
the methods that we used are quite general, they provide a common framework for analysing
such biochemical systems. In the first analysis, we investigated cycling in general with the help of
a model selection procedure in a linear regression setting. Because of the inequality constraints
for dynamical parameters and variables which are a common requirement for signalling path-
ways, likelihood ratio tests under non-standard conditions are the appropriate technique when
analysing these systems. We have shown that different approximating assumptions concerning
the error structure and normality may have a huge effect on the distribution of the test statis-
tic, in the present case leading to a too high actual level of the test, bearing the risk of false
positive results. Moreover in most cases it is necessary to simulate this distribution under the
null hypotheses since analytical results are not available.

In the second investigation, we compared two dynamical models which consist of different
cycling mechanisms. This led to a model selection problem with non-nested non-linear models
in the finite sample case. A specialized bootstrap technique turned out to have enough power
to discriminate between both models.

Owing to an improvement in measurement techniques and the general importance of signal-
ling pathways we expect interest in modelling these systems to grow rapidly in the near future.
Therefore it is necessary to provide the mathematical means for model selection procedures
to avoid false positive results. Especially in the non-limit case with few data points, statistical
testing under non-standard conditions remains a crucial problem.

References

Bhalla, U. and Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science, 283,
381–387.



568 T. G. Müller, D. Faller, J. Timmer, I. Swameye, O. Sandra and U. Klingmüller

Bock, H. (1981) Numerical treatment of inverse problems in chemical reaction kinetics. In Modelling of Chemical
Reaction Systems (eds K. Ebert, P. Deuflhard and W. Jäger), pp. 102–125. Berlin: Springer.
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